Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Biochem Nutr ; 69(1): 44-51, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34376913

RESUMO

Leukocyte activation and the resulting oxidative stress induced by bioincompatible materials during hemodialysis impact the prognosis of patients. Despite multiple advances in hemodialysis dialyzers, the prognosis of hemodialysis patients with complications deeply related to oxidative stress, such as diabetes mellitus, remains poor. Thus, we re-evaluated the effects of hemodialysis on multiple reactive oxygen species using electron spin resonance-based methods for further improvement of biocompatibility in hemodialysis. We enrolled 31 patients in a stable condition undergoing hemodialysis using high-flux polysulfone dialyzers. The effects of hemodialysis on reactive oxygen species were evaluated by two methods: MULTIS, which evaluates serum scavenging activities against multiple hydrophilic reactive oxygen species, and i-STrap, which detects lipophilic carbon-center radicals. Similar to previous studies, we found that serum hydroxyl radical scavenging activity significantly improved after hemodialysis. Unlike previous studies, we discovered that scavenging activity against alkoxyl radical was significantly reduced after hemodialysis. Moreover, patients with diabetes mellitus showed a decrease in serum scavenging activity against alkyl peroxyl radicals and an increase in lipophilic carbon-center radicals after hemodialysis. These results suggest that despite extensive improvements in dialyzer membranes, the forms of reactive oxygen species that can be eliminated during dialysis are limited, and multiple reactive oxygen species still remain at increased levels during hemodialysis.

2.
J Clin Biochem Nutr ; 67(2): 131-136, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33041509

RESUMO

Proline-rich proteins are associated with the formation of an acquired protein layer overlying the tooth enamel surface. Previous studies have described the antioxidant activity of salivary histatin against the hydroxyl radical from Fenton's reaction, acting as the critical reactive oxygen species. However, the role of proline-rich proteins in mitigating the oxidative stress caused by reactive oxygen species in the oral cavity remains unclear. In this study, we investigated the antioxidant effects of proline-rich proteins 2 on direct reactive oxygen species using electron spin resonance spectroscopy. For the first time, we demonstrated that proline-rich proteins 2 exhibits antioxidant activity directly against the hydroxyl radical produced by hydrogen peroxide with ultraviolet. Considering that identical results were obtained when assaying 30 residues of proline-rich proteins 2, the direct antioxidant effects against the hydroxyl radical by proline-rich proteins 2 may be related to these specific 30 residues.

3.
J Clin Biochem Nutr ; 65(3): 217-222, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31777423

RESUMO

Histatin, a salivary protein, affects oral homeostasis through preservation of tooth integrity and protection against caries and fungal infections. However, the effects of histatin in the generation of oxidative stress induced by reactive oxygen species and in the oral cavity remain unclear. In this study, the effects of histatin on direct reactive oxygen species scavenging activity were examined using electron spin resonance. We demonstrated, for the first time, that histatin exhibits antioxidant activity against hydroxyl radicals generated by Fenton's reaction by metal chelation or binding. The direct antioxidant effects of histatin, along with its antimicrobial activity, may be important in the oral protection of salivary proteins.

4.
Biomaterials ; 30(20): 3378-89, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19303139

RESUMO

Currently used poly(methyl methacrylate) (PMMA)-based bone cement lacks osteoconductivity and induces osteolysis and implant loosening due to its cellular and tissue-toxicity. A high percentage of revision surgery following the use of bone cement has become a significant universal problem. This study determined whether incorporation of the amino acid derivative N-acetyl cysteine (NAC) in bone cement reduces its cytotoxicity and adds osteoconductivity to the material. Biocompatibility and bioactivity of PMMA-based bone cement with or without 25mm NAC incorporation was examined using rat bone marrow-derived osteoblastic cells. Osteoconductive potential of NAC-incorporated bone cement was determined by microCT bone morphometry and implant biomechanical test in the rat model. Generation of free radicals within the polymerizing bone cement was examined using electron spin resonance spectroscopy. Severely compromised viability and completely suppressed phenotypes of osteoblasts on untreated bone cement were restored to the normal level by NAC incorporation. Bone volume formed around 25mm NAC-incorporated bone cement was threefold greater than that around control bone cement. The strength of bone-bone cement integration was 2.2 times greater for NAC-incorporated bone cement. For NAC-incorporated bone cement, the spike of free radical generation ended within 12h, whereas for control bone cement, a peak level lasted for 6 days and a level greater than half the level of the peak was sustained for 20 days. NAC also increased the level of antioxidant glutathione in osteoblasts. These results suggest that incorporation of NAC in PMMA bone cement detoxifies the material by immediate and effective in situ scavenging of free radicals and increasing intracellular antioxidant reserves, and consequently adds osteoconductivity to the material.


Assuntos
Acetilcisteína/química , Materiais Biocompatíveis/química , Cimentos Ósseos/química , Polimetil Metacrilato/química , Acetilcisteína/metabolismo , Animais , Materiais Biocompatíveis/metabolismo , Cimentos Ósseos/metabolismo , Regeneração Óssea/fisiologia , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Calcificação Fisiológica , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Masculino , Teste de Materiais , Osteoblastos/citologia , Osteoblastos/metabolismo , Fenótipo , Polimetil Metacrilato/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...